Action Recognition Based on Spatio-temporal Log-Euclidean Covariance Matrix
نویسندگان
چکیده
منابع مشابه
Action Recognition Based on Spatio-temporal Log-Euclidean Covariance Matrix
In this paper, we handle the problem of human action recognition by combining covariance matrices as local spatio-temporal (ST) descriptors and local ST features extracted densely from action video. Unlike traditional methods that separately utilizing gradient-based feature and optical flow-based feature, we use covariance matrix to fuse the two types of feature. Since covariance matrices are S...
متن کاملHuman action recognition based on graph-embedded spatio-temporal subspace
Human action recognition is an important issue in the pattern recognition field, with applications ranging from remote surveillance to the indexing of commercial video content. However, human actions are characterized by non-linear dynamics and are therefore not easily learned and recognized. Accordingly, this study proposes a silhouette-based human action recognition system in which a threeste...
متن کاملAction Recognition based on View Invariant Spatio-temporal Analysis
In this paper, we propose an approach that retrieves actions from the videos based on the dynamic time warping of view invariant characteristics. Action is represented as a sequence of dynamic instants and intervals, which are computed using the spatiotemporal curvature of a trajectory. Dynamic Time Warping matches action trajectories using a view invariant similarity measurement. The nearest d...
متن کاملSpatio-Temporal Graph Convolution for Skeleton Based Action Recognition
Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed mul...
متن کاملSpatio-temporal SURF for Human Action Recognition
In this paper, we propose a new spatio-temporal descriptor called ST-SURF. The latter is based on a novel combination between the speed up robust feature and the optical flow. The Hessian detector is employed to find all interest points. To reduce the computation time, we propose a new methodology for video segmentation, in Frames Packets FPs, based on the interest points trajectory tracking. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Signal Processing, Image Processing and Pattern Recognition
سال: 2016
ISSN: 2005-4254,2005-4254
DOI: 10.14257/ijsip.2016.9.2.09